RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 5, Pages 674–686 (Mi mzm10535)

This article is cited in 3 papers

Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight

V. I. Ivanov, A. V. Ivanov

Tula State University

Abstract: The paper is devoted to the determination of the optimal arguments in the sharp Jackson–Stechkin inequality with modulus of continuity of order $r$ in the space $L_2(\mathbb{R}^d)$ with Dunkl weight defined by the root system $R$ and a nonnegative function of multiplicity $k$. If
$$ \lambda_k=\frac d2-1+\sum_{\alpha\in R_+}k(\alpha)=\frac12, $$
where $R_+$ is the positive subsystem of the root system, then the optimal arguments for all $r$ coincide. If $\lambda_k\ne 1/2$, then the optimal argument for the modulus of continuity of second order is greater than for the first order. Such patterns are related to the arithmetic properties of zeros of Bessel functions.

Keywords: Jackson–Stechkin inequality, the space $L_2(\mathbb{R}^d)$ with Dunkl weight, modulus of continuity, Logan problem, Dunkl transform, Bessel function, Hankel transform, Borel probability measure.

UDC: 517.5

Received: 16.06.2014

DOI: 10.4213/mzm10535


 English version:
Mathematical Notes, 2014, 96:5, 666–677

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024