RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2014 Volume 96, Issue 6, Pages 905–910 (Mi mzm10562)

This article is cited in 19 papers

Sharpening of the Universality Inequality

A. Laurinčikas, L. Meška

Vilnius University

Abstract: The universality theorem asserts that the lower density of any set of shifts of the Riemann zeta-function which approximate a given analytic function with accuracy $\varepsilon>0$ is strictly positive. It is proved that this set has strictly positive density for all but at most countably many $\varepsilon>0$.

Keywords: universality theorem, universality inequality, Riemann zeta-function, approximation of analytic functions.

UDC: 511

Received: 09.07.2013

DOI: 10.4213/mzm10562


 English version:
Mathematical Notes, 2014, 96:6, 971–976

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024