RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 2, Pages 232–246 (Mi mzm10611)

This article is cited in 3 papers

On Simplices in Diameter Graphs in $\mathbb R^4$

A. B. Kupavskiiab, A. A. Poljanskijacd

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b École Polytechnique Fédérale de Lausanne
c Technion – Israel Institute of Technology
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow

Abstract: A graph $G$ is a diameter graph in $\mathbb R^d$ if its vertex set is a finite subset in $\mathbb R^d$ of diameter $1$ and edges join pairs of vertices a unit distance apart. It is shown that if a diameter graph $G$ in $\mathbb R^4$ contains the complete subgraph $K$ on five vertices, then any triangle in $G$ shares a vertex with $K$. The geometric interpretation of this statement is as follows. Given any regular unit simplex on five vertices and any regular unit triangle in $\mathbb R^4$, then either the simplex and the triangle have a common vertex or the diameter of the union of their vertex sets is strictly greater than $1$.

Keywords: diameter graphs, Schur's conjecture.

UDC: 519.112.7

Received: 04.03.2014
Revised: 13.03.2016

DOI: 10.4213/mzm10611


 English version:
Mathematical Notes, 2017, 101:2, 265–276

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025