RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 98, Issue 6, Pages 853–864 (Mi mzm10623)

This article is cited in 23 papers

Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems

M. A. Davydova

Lomonosov Moscow State University

Abstract: This paper deals with the boundary-value problem for a nonlinear elliptic equation containing a small parameter multiplying the derivatives and degenerating into a finite equation as the small parameter tends to zero. The existence theorem for the solution with a boundary layer and its Lyapunov stability are proved.

Keywords: singularly perturbed reaction-diffusion-advection problem, nonlinear elliptic equation with small parameter, Lyapunov stability, boundary layer, boundary layer expansion.

UDC: 517.9

Received: 27.10.2014
Revised: 17.03.2015

DOI: 10.4213/mzm10623


 English version:
Mathematical Notes, 2015, 98:6, 909–919

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024