RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 4, Pages 483–491 (Mi mzm10634)

This article is cited in 2 papers

On Fourier Coefficients of Lacunary Systems

S. V. Astashkina, E. M. Semenovb

a Samara State Aerospace University
b Voronezh State University

Abstract: We prove that the Zygmund space $L(\ln L)^{1/2}$ is the greatest one in the set of symmetric spaces $X$ for which any uniformly bounded orthonormal system of functions contains a sequence such that the corresponding space of Fourier coefficients $F(X)$ coincides with $\ell_2$. Similar results also hold for symmetric spaces located between the spaces $L(\ln L)^{1/2}$ and $L_1$.

Keywords: orthonormal system, Fourier coefficients, symmetric space, real interpolation method.

UDC: 517.982.22+517.983.23

Received: 11.11.2014
Revised: 27.03.2016

DOI: 10.4213/mzm10634


 English version:
Mathematical Notes, 2016, 100:4, 507–514

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025