RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 6, Pages 855–866 (Mi mzm10754)

This article is cited in 3 papers

On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz–Zygmund Class

M. V. Voitovichabc

a Institute of Mathematics, Ukrainian National Academy of Sciences
b Mariupol State University
c Donetsk National University

Abstract: In the present paper, a $2m$th-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space $W^{m,p}(\Omega)$, $\Omega\subset \mathbb{R}^{n}$, $p>1$. It is proved that an arbitrary generalized (in the sense of distributions) solution $u\in W^{m,p}_{0}(\Omega)$ of this equation is bounded if $m\ge2$, $n=mp$, and the right-hand side of this equation belongs to the Orlicz–Zygmund space $L(\log L)^{n-1}(\Omega)$.

Keywords: quasilinear divergence equation, generalized solution, Sobolev space, Orlicz–Zygmund space.

UDC: 517.956.25

PACS: 02.30.Jr

Received: 25.04.2015
Revised: 15.12.2015

DOI: 10.4213/mzm10754


 English version:
Mathematical Notes, 2016, 99:6, 840–850

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025