RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 1, Pages 102–120 (Mi mzm10789)

This article is cited in 3 papers

Oscillation of the Measure of Irrationality Function in the Multidimensional Case

D. O. Shatskov

Astrakhan State University

Abstract: It is proved that, for almost all pairs of $n\times m$ matrices $\Theta$$\Theta'$, in the cases $m=1$ and $n=2$ or $m\ge2$ and $n=1$, the difference between the measure of irrationality functions $\psi_\Theta-\psi_{\Theta'}$ oscillates an infinite number of times as $t\to+\infty$.

Keywords: measure of irrationality function of a matrix, oscillation of a function, algebraically independent real numbers, Lebesgue measure, Borel–Cantelli sequence.

UDC: 517

Received: 29.01.2015
Revised: 21.06.2015

DOI: 10.4213/mzm10789


 English version:
Mathematical Notes, 2016, 99:1, 120–137

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025