RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 3, Pages 404–408 (Mi mzm10797)

On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras

L. M. Samoilov

Ulyanovsk State University

Abstract: In the paper, it is proved that, if $f(x_1,\dots,x_n)g(y_1,\dots,y_m)$ is a multilinear central polynomial for a verbally prime $T$-ideal $\Gamma$ over a field of arbitrary characteristic, then both polynomials $f(x_1,\dots,x_n)$ and $g(y_1,\dots,y_m)$ are central for $\Gamma$.

Keywords: associative algebra, multilinear central polynomial, verbally prime $T$-ideal, prime central polynomial, prime variety.

Received: 23.05.2015
Revised: 21.10.2015

DOI: 10.4213/mzm10797


 English version:
Mathematical Notes, 2016, 99:3, 413–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025