RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015 Volume 98, Issue 3, Pages 378–385 (Mi mzm10815)

This article is cited in 3 papers

Isometric Embeddings in $\mathbb{R}^3$ of an Annulus with a Locally Euclidean Metric which Are Multivalued of Cylindrical Type

S. N. Mikhalev, I. Kh. Sabitov

Lomonosov Moscow State University

Abstract: It is proved that a locally Euclidean metric on a circular annulus admitting an isometric immersion in $\mathbb R^2$ which is multivalued of cylindrical type can be isometrically embedded in $\mathbb R^3$ as a cylindrical surface.

Keywords: locally Euclidean metric, isometric embedding, isometric immersion, cylindrical surface, planar graph.

UDC: 515.14

Received: 25.02.2014
Revised: 19.03.2015

DOI: 10.4213/mzm10815


 English version:
Mathematical Notes, 2015, 98:3, 441–447

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024