RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 4, Pages 502–510 (Mi mzm10844)

This article is cited in 2 papers

The Hardy–Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients

M. I. Dyachenkoa, E. D. Nursultanovb, M. E. Nursultanovb

a Lomonosov Moscow State University
b L. N. Gumilev Eurasian National University, Astana

Abstract: It was proved earlier that, for multiple Fourier series whose coefficients are monotone in each index, the classical Hardy–Littlewood theorem is not valid for $p\le 2m/(m+1)$, where $m$ is the dimension of the space. We establish how the theorem must be modified in this case.

Keywords: Hardy–Littlewood theorem, multiple Fourier series, trigonometric polynomial.

UDC: 517.52

Received: 16.04.2015
Revised: 23.10.2015

DOI: 10.4213/mzm10844


 English version:
Mathematical Notes, 2016, 99:4, 503–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024