RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 5, Pages 739–743 (Mi mzm10851)

Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension

Kh. D. Ikramov

Lomonosov Moscow State University

Abstract: Consider the sesquilinear matrix equation $X^*DX+AX+X^*B+C=0$, where all the matrices are square and have the same order $n$. With this equation, we associate a block matrix $M$ of double order $2n$. The solvability of the above equation turns out to be related to the existence of $n$-dimensional neutral subspaces for the matrix $M$. We indicate sufficiently general conditions ensuring the existence of such subspaces.

Keywords: sesquilinear matrix equation, neutral subspace, congruence, cosquare, Jordan form.

UDC: 519.6

Received: 28.07.2015

DOI: 10.4213/mzm10851


 English version:
Mathematical Notes, 2016, 100:5, 720–723

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025