RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 2, Pages 262–277 (Mi mzm10854)

This article is cited in 15 papers

On the Deficiency Index of the Vector-Valued Sturm–Liouville Operator

K. A. Mirzoeva, T. A. Safonovab

a Lomonosov Moscow State University
b Nothern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk

Abstract: Let $\mathbb R_+:=[0,+\infty)$, and let the matrix functions $P$, $Q$, and $R$ of order $n$, $n\in\mathbb N$, defined on the semiaxis $\mathbb R_+$ be such that $P(x)$ is a nondegenerate matrix, $P(x)$ and $Q(x)$ are Hermitian matrices for $x\in\mathbb R_+$ and the elements of the matrix functions $P^{-1}$, $Q$, and $R$ are measurable on $\mathbb R_+$ and summable on each of its closed finite subintervals. We study the operators generated in the space $\mathscr L^2_n(\mathbb R_+)$ by formal expressions of the form
$$ l[f]=-(P(f'-Rf))'-R^*P(f'-Rf)+Qf $$
and, as a particular case, operators generated by expressions of the form
$$ l[f]=-(P_0f')'+i((Q_0f)'+Q_0f')+P'_1f, $$
where everywhere the derivatives are understood in the sense of distributions and $P_0$, $Q_0$, and $P_1$ are Hermitian matrix functions of order $n$ with Lebesgue measurable elements such that $P^{-1}_0$ exists and $\|P_0\|,\|P^{-1}_0\|, \|P^{-1}_0\|\|P_1\|^2,\|P^{-1}_0\|\|Q_0\|^2 \in \mathscr L^1_{\mathrm{loc}}(\mathbb R_+)$.
The main goal in this paper is to study of the deficiency index of the minimal operator $L_0$ generated by expression $l[f]$ in $\mathscr L^2_n(\mathbb R_+)$ in terms of the matrix functions $P$, $Q$, and $R$ ($P_0$, $Q_0$, and $P_1$). The obtained results are applied to differential operators generated by expressions of the form
$$ l[f]=-f''+\sum_{k=1}^{+\infty}\mathscr H_k\delta(x-x_{k})f, $$
where $x_k$, $k=1,2,\dots$, is an increasing sequence of positive numbers, with $\lim_{k\to +\infty}x_k=+\infty$, $\mathscr H_k$ is a number Hermitian matrix of order $n$, and $\delta(x)$ is the Dirac $\delta$-function.

Keywords: Sturm–Liouville operator, deficiency index, Hermitian matrix-function, Jacobi matrix, Cauchy–Bunyakovskii inequality, quasiderivative, quasidifferential equation.

UDC: 517.983.35+517.929.2

Received: 26.07.2015

DOI: 10.4213/mzm10854


 English version:
Mathematical Notes, 2016, 99:2, 290–303

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024