RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 3, Pages 366–375 (Mi mzm10875)

This article is cited in 4 papers

Besicovitch Cylindrical Transformation with a Hölder Function

A. V. Kochergin

Lomonosov Moscow State University

Abstract: For any $\gamma\in(0,1)$ and $\varepsilon>0$, we construct a cylindrical cascade with a $\gamma$-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than $1-\gamma-\varepsilon$.

Keywords: cylindrical transformation, Besicovitch property, Hölder property, Hausdorff dimension.

UDC: 517.9

Received: 17.05.2015

DOI: 10.4213/mzm10875


 English version:
Mathematical Notes, 2016, 99:3, 382–389

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025