RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2015, Volume 98, Issue 1, Pages 138–157 (Mi mzm10914)

This article is cited in 15 papers

Papers published in the English version of the journal

Case of Less Than Two Degrees of Freedom, Negative Pressure, and the Fermi–Dirac Distribution for a Hard Liquid

V. P. Maslovab

a National Research University Higher School of Economics, Moscow, Russia
b Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia

Abstract: The notion of ideal liquid for the number of degrees of freedom less than $2$, i.e., $\gamma<0$, is introduced. The values of the pressure $P$ and of the compressibility factor $Z$ on the spinodal in the negative pressure region for the van der Waals equation determine the value of $\gamma$, $\gamma(T)<0$, for $\mu=0$. For $T\leq \frac{3^3}{2^5} T_c$, a relationship with the van der Waals equation is established.

Keywords: number of degrees of freedom, negative pressure, Fermi–Dirac distribution, hard liquid.

Received: 25.04.2015

Language: English


 English version:
Mathematical Notes, 2015, 98:1, 138–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024