RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 4, Pages 588–602 (Mi mzm10953)

This article is cited in 12 papers

The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function

B. N. Khabibullin, T. Yu. Baiguskarov

Bashkir State University, Ufa

Abstract: For an arbitrary subharmonic function not identically equal to $-\infty$ in a domain $D$ of the complex plane $\mathbb C$, we prove the existence of a nonzero holomorphic function in $D$ the logarithm of whose modulus is majorized by locally averaging a subharmonic function with logarithmic additions or even without them in the case $D=\mathbb C$.

Keywords: subharmonic function, minorant for a subharmonic function, holomorphic function, Riesz measure, Poisson–Jensen formula, logarithmic potential.

UDC: 517.53+517.574

Received: 16.04.2015
Revised: 15.09.2015

DOI: 10.4213/mzm10953


 English version:
Mathematical Notes, 2016, 99:4, 576–589

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025