RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 99, Issue 6, Pages 878–886 (Mi mzm10960)

On the Divergence of Fourier Series in the Spaces $\varphi(L)$ Containing $L$

M. R. Gabdullinab

a Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: The paper deals with the question of the divergence of Fourier series in function spaces wider than $L=L[-\pi,\pi]$, but narrower than $L^p=L^p[-\pi,\pi]$ for all $p\in(0,1)$. It is proved that the recent results of Filippov on the generalization to the space $\varphi(L)$ of Kolmogorov's theorem on the convergence of Fourier series in $L^p$, $p\in(0,1)$, cannot be improved.

Keywords: Fourier series, the space $\varphi(L)$, the spaces $L^p$, $p\in(0,1)$, convergence of Fourier series, integrable function.

UDC: 517

Received: 08.12.2014
Revised: 18.10.2015

DOI: 10.4213/mzm10960


 English version:
Mathematical Notes, 2016, 99:6, 861–869

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025