RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 2, Pages 262–285 (Mi mzm11002)

This article is cited in 1 paper

Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas

E. A. Sevast'yanov

National Engineering Physics Institute "MEPhI", Moscow

Abstract: For arbitrary Riemann integrable functions $f$ and irrational numbers $\theta \in (0,1)$, we obtain estimates of the error $R_n(f,\theta)$ of the quadrature formula
$$ \int_{0}^{1}f(x)\,dx=\frac{1}{n}\sum_{k=1}^nf(\{k\theta\})- R_n(f,\theta) $$
in which $\{k\theta\}$ is the fractional part of the number $k\theta$.

Keywords: quadrature formula, continued fraction, type of an irrational number, mean oscillation modulus.

UDC: 511+511.9

Received: 15.10.2015

DOI: 10.4213/mzm11002


 English version:
Mathematical Notes, 2017, 101:2, 320–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025