Abstract:
For arbitrary Riemann integrable functions $f$ and irrational numbers $\theta \in (0,1)$, we obtain estimates of the error $R_n(f,\theta)$ of the quadrature formula $$ \int_{0}^{1}f(x)\,dx=\frac{1}{n}\sum_{k=1}^nf(\{k\theta\})- R_n(f,\theta) $$ in which $\{k\theta\}$ is the fractional part of the number $k\theta$.
Keywords:quadrature formula, continued fraction, type of an irrational number, mean oscillation modulus.