RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 1, Pages 58–76 (Mi mzm11039)

This article is cited in 11 papers

Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University

Abstract: The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodic motion in this system are studied.

Keywords: repressilator, genetic oscillator, relaxation cycle, stability, asymptotics.

UDC: 517.926

Received: 07.12.2015
Revised: 05.03.2016

DOI: 10.4213/mzm11039


 English version:
Mathematical Notes, 2017, 101:1, 71–86

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024