RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 5, Pages 689–700 (Mi mzm11064)

On the Application of Linear Positive Operators for Approximation of Functions

S. B. Gashkov

Lomonosov Moscow State University

Abstract: For the linear positive Korovkin operator
$$ f(x)\to t_n(f;x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)E(t)\,dt, $$
where $E(x)$ is the Egervary–Szász polynomial and the corresponding interpolation mean
$$ t_{n,N}(f;x)=\frac{1}{N}\sum_{k=-N}^{N-1} E_n\biggl(x-\frac{\pi k}{N}\biggr)f\biggl(\frac{\pi k}{N}\biggr), $$
the Jackson-type inequalities
$$ \|t_{n,N}(f;x)-f(x)\| \le (1+\pi)\omega_f\biggl(\frac1n\biggr),\qquad \|t_{n,N}(f;x)-f(x)\| \le 2\omega_f\biggl(\frac{\pi}{n+1}\biggr), $$
where $\omega_f(x)$ denotes the modulus of continuity, are proved for $N > n/2$. For $\omega_f(x) \le Mx$, the inequality
$$ \|t_{n,N}(f;x)-f(x)\| \le \frac{\pi M}{n+1} \mspace{2mu}. $$
is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.

Keywords: positive linear operators, Korovkin operator, interpolation mean, trigonometric polynomial, Egervary–Szász polynomial, Jackson-type inequality, functions satisfying the Lipschitz condition, Kolmogorov width.

UDC: 517.518.8

Received: 25.12.2015
Revised: 08.05.2016

DOI: 10.4213/mzm11064


 English version:
Mathematical Notes, 2016, 100:5, 666–676

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025