On the Application of Linear Positive Operators for Approximation of Functions
S. B. Gashkov Lomonosov Moscow State University
Abstract:
For the linear positive Korovkin operator
$$ f(x)\to t_n(f;x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)E(t)\,dt, $$
where
$E(x)$ is the Egervary–Szász polynomial and the corresponding interpolation mean
$$ t_{n,N}(f;x)=\frac{1}{N}\sum_{k=-N}^{N-1} E_n\biggl(x-\frac{\pi k}{N}\biggr)f\biggl(\frac{\pi k}{N}\biggr), $$
the Jackson-type inequalities
$$ \|t_{n,N}(f;x)-f(x)\| \le (1+\pi)\omega_f\biggl(\frac1n\biggr),\qquad \|t_{n,N}(f;x)-f(x)\| \le 2\omega_f\biggl(\frac{\pi}{n+1}\biggr), $$
where
$\omega_f(x)$ denotes the modulus of continuity, are proved for
$N > n/2$. For
$\omega_f(x) \le Mx$, the inequality
$$ \|t_{n,N}(f;x)-f(x)\| \le \frac{\pi M}{n+1} \mspace{2mu}. $$
is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.
Keywords:
positive linear operators, Korovkin operator, interpolation mean, trigonometric polynomial, Egervary–Szász polynomial, Jackson-type inequality, functions satisfying the Lipschitz condition, Kolmogorov width.
UDC:
517.518.8 Received: 25.12.2015
Revised: 08.05.2016
DOI:
10.4213/mzm11064