RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 4, Pages 519–530 (Mi mzm11110)

This article is cited in 5 papers

Approximation in $L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator

D. V. Gorbachev, V. I. Ivanov

Tula State University

Abstract: For approximations in the space $L_2(\mathbb{R}_+)$ by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove Jackson's inequality with exact constant and optimal argument in the modulus of continuity. The optimality of the argument in the modulus of continuity is established using the Gauss quadrature formula on the half-line over the zeros of the eigenfunction of the Sturm–Liouville operator.

Keywords: Sturm–Liouville operator on the half-line, the space $L_2$, Fourier transform, Jackson's inequality, Gauss quadrature formula.

UDC: 517.5

Received: 09.02.2016

DOI: 10.4213/mzm11110


 English version:
Mathematical Notes, 2016, 100:4, 540–549

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025