RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 1, Pages 59–77 (Mi mzm11122)

This article is cited in 16 papers

Matrix Schrödinger Operator with $\delta$-Interactions

A. S. Kostenkoa, M. M. Malamudb, D. D. Natyagajlob

a University of Vienna, Austria
b Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine

Abstract: The matrix Schrödinger operator with point interactions on the semiaxis is studied. Using the theory of boundary triplets and the corresponding Weyl functions, we establish a relationship between the spectral properties (deficiency indices, self-adjointness, semiboundedness, etc.) of the operators under study and block Jacobi matrices of certain class.

Keywords: Schrödinger operator, Jacobi matrix, delta-interaction, self-adjointness, deficiency index.

UDC: 517.958

Received: 17.02.2016
Revised: 25.02.2016

DOI: 10.4213/mzm11122


 English version:
Mathematical Notes, 2016, 100:1, 49–65

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024