RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 5, Pages 744–756 (Mi mzm11134)

This article is cited in 2 papers

Fractional Parts of the Function $x/n$

A. V. Shubin

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: Asymptotic formulas for sums of values of some class of smooth functions of fractional parts of numbers of the form $x/n$, where the parameter $x$ increases unboundedly and the integer $n$ ranges over various subsets of the interval $[1,x]$, are obtained.

Keywords: fractional parts, asymptotic behavior, divisor problem, method of trigonometric sums.

UDC: 511.335

Received: 19.02.2016

DOI: 10.4213/mzm11134


 English version:
Mathematical Notes, 2016, 100:5, 731–742

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025