RUS
ENG
Full version
JOURNALS
// Matematicheskie Zametki
// Archive
Mat. Zametki,
2018
Volume 104,
Issue 2,
Pages
273–288
(Mi mzm11236)
This article is cited in
5
papers
Quasiuniversal Fourier–Walsh Series for the Classes
$L^p[0,1]$
,
$p>1$
A. A. Sargsyan
Russian-Armenian (Slavonic) State University, Yerevan
Abstract:
It is proved that, for each number
$p>1$
, there exists a function
$L^1[0,1]$
whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class
$L^p[0,1]$
in the sense of
$L^p$
-convergence.
Keywords:
universal series, Fourier coefficients, Walsh system,
$L^p$
-convergence.
UDC:
517.51
Received:
21.03.2016
Revised:
17.08.2017
DOI:
10.4213/mzm11236
Fulltext:
PDF file (547 kB)
References
Cited by
English version:
Mathematical Notes, 2018,
104
:2,
278–292
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025