RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 2, Pages 273–288 (Mi mzm11236)

This article is cited in 5 papers

Quasiuniversal Fourier–Walsh Series for the Classes $L^p[0,1]$, $p>1$

A. A. Sargsyan

Russian-Armenian (Slavonic) State University, Yerevan

Abstract: It is proved that, for each number $p>1$, there exists a function $L^1[0,1]$ whose Fourier–Walsh series is quasiuniversal with respect to subseries-signs in the class $L^p[0,1]$ in the sense of $L^p$-convergence.

Keywords: universal series, Fourier coefficients, Walsh system, $L^p$-convergence.

UDC: 517.51

Received: 21.03.2016
Revised: 17.08.2017

DOI: 10.4213/mzm11236


 English version:
Mathematical Notes, 2018, 104:2, 278–292

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025