RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 3, Pages 404–416 (Mi mzm11244)

This article is cited in 1 paper

On the Dimension of Preimages of Certain Paracompact Spaces

I. M. Leibo

Moscow Center for Continuous Mathematical Education

Abstract: It is proved that if $X$ is a normal space which admits a closed fiberwise strongly zero-dimensional continuous map onto a stratifiable space $Y$ in a certain class (an S-space), then $\operatorname{Ind}{X}=\operatorname{dim}{X}$. This equality also holds if ${Y}$ is a paracompact $\sigma$-space and $\operatorname{ind}{Y}=0$. It is shown that any closed network of a closed interval or the real line is an S-network. A simple proof of the Katětov–Morita inequality for paracompact $\sigma$-spaces (and, hence, for stratifiable spaces) is given.

Keywords: dimension, network, $\sigma$-space, stratifiable space.

UDC: 515.127.12

Received: 07.06.2016
Revised: 30.01.2017

DOI: 10.4213/mzm11244


 English version:
Mathematical Notes, 2018, 103:3, 405–414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025