Abstract:
Let
$\mathbb{F}_q$
be a finite field, let
$\mathbb{X}$
be a subset
of the projective space
${\mathbb P}^{s-1}$
over
$\mathbb{F}_q$
parametrized by rational functions, and let
$I(\mathbb{X})$
be the vanishing ideal of
$\mathbb{X}$.
The main
result of this paper is a formula for
$I(\mathbb{X})$
that will
allow us to compute (i) the algebraic invariants of
$I(\mathbb{X})$
and (ii) the basic
parameters of the corresponding Reed–Muller-type code.