RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 6, Pages 932–938 (Mi mzm11305)

This article is cited in 7 papers

On Stability of Closedness and Self-Adjointness for $2\times 2$ Operator Matrices

A. A. Shkalikova, C. Trunkb

a Lomonosov Moscow State University
b Technische Universität Ilmenau, Germany

Abstract: Consider an operator which is defined in Banach or Hilbert space $X=X_1\times X_2$ by the matrix
\begin{equation*} \mathbf L = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \end{equation*}
where the linear operators $A\colon X_1 \to X_1$, $B\colon X_2 \to X_1$, $C\colon X_1\to X_2$, and $D\colon X_2\to X_2$ are assumed to be unbounded. In the case when the operators $C$ and $B$ are relatively bounded with respect to the operators $A$ and $D$, respectively, new conditions of closedness or closability are obtained for the operator $\mathbf L$. For the operator $\mathbf L$ acting in a Hilbert space, analogs of Rellich–Kato theorems on the stability of self-adjointness are obtained.

Keywords: operator matrices, perturbations of linear operators, closed operators, self-adjoint operators.

UDC: 517.958

Received: 18.07.2016

DOI: 10.4213/mzm11305


 English version:
Mathematical Notes, 2016, 100:6, 870–875

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024