RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 3, Pages 355–368 (Mi mzm11412)

This article is cited in 4 papers

On the Positive Definiteness of Some Functions Related to the Schoenberg Problem

V. P. Zastavnyi, A. D. Manov

Donetsk National University

Abstract: For a broad class of functions $f\colon[0,+\infty)\to\mathbb{R}$, we prove that the function $f(\rho^{\lambda}(x))$ is positive definite on a nontrivial real linear space $E$ if and only if $0\le\lambda\le \alpha(E,\rho)$. Here $\rho$ is a nonnegative homogeneous function on $E$ such that $\rho(x)\not\equiv 0$ and $\alpha(E,\rho)$ is the Schoenberg constant.

Keywords: positive definite function, completely monotone function, Schoenberg problem, Kuttner–Golubov problem, Fourier transform, Bochner theorem.

UDC: 517.5+519.213

Received: 10.10.2016
Revised: 16.01.2017

DOI: 10.4213/mzm11412


 English version:
Mathematical Notes, 2017, 102:3, 325–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024