RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 2, Pages 236–247 (Mi mzm11423)

Hirzebruch Functional Equations and Krichever Complex Genera

I. V. Netayab

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University "Higher School of Economics" (HSE), Moscow

Abstract: As is well known, the two-parameter Todd genus and the elliptic functions of level $d$ define $n$-multiplicative Hirzebruch genera if $d$ divides $n+ 1$. Both cases are special cases of the Krichever genera defined by the Baker–Akhiezer function. In the present paper, the inverse problem is solved. Namely, it is proved that only these properties define $n$-multiplicative Hirzebruch genera among all Krichever genera for all $n$.

Keywords: Hirzebruch genus, elliptic function, functional equation.

UDC: 515.14

Received: 21.10.2016
Revised: 14.04.2017

DOI: 10.4213/mzm11423


 English version:
Mathematical Notes, 2018, 103:2, 232–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024