Abstract:
In this paper, we study the existence of multiple
solutions for the boundary-value problem
$$
\Delta_{\gamma} u+f(x,u)=0 \quad \text{in}\ \ \Omega, \qquad
u=0 \quad\text{on}\ \ \partial \Omega,
$$
where
$\Omega$
is a bounded domain with smooth boundary in
$\mathbb{R}^N$$(N \ge 2)$
and
$\Delta_{\gamma}$
is the subelliptic operator of the type
$$
\Delta_\gamma u =\sum\limits_{j=1}^{N}\partial_{x_j} \left(\gamma_j^2 \partial_{x_j}u \right),\qquad
\partial_{x_j}u=\frac{\partial u}{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N).
$$
We use the three critical point theorem.
Keywords:Semilinear degenerate elliptic equations, critical points, two solutions, multiple solutions.