RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 101, Issue 5, Pages 815–823 (Mi mzm11437)

This article is cited in 14 papers

Papers published in the English version of the journal

Two Nontrivial Solutions of Boundary-Value Problems for Semilinear $\Delta_{\gamma}$-Differential Equations

D. T. Luyen

Department of Mathematics, Hoa Lu University, Ninh Nhat, Ninh Binh city, Vietnam

Abstract: In this paper, we study the existence of multiple solutions for the boundary-value problem
$$ \Delta_{\gamma} u+f(x,u)=0 \quad \text{in}\ \ \Omega, \qquad u=0 \quad\text{on}\ \ \partial \Omega, $$
where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N$ $(N \ge 2)$ and $\Delta_{\gamma}$ is the subelliptic operator of the type
$$ \Delta_\gamma u =\sum\limits_{j=1}^{N}\partial_{x_j} \left(\gamma_j^2 \partial_{x_j}u \right),\qquad \partial_{x_j}u=\frac{\partial u}{\partial x_{j}},\quad \gamma = (\gamma_1, \gamma_2, \dots, \gamma_N). $$

We use the three critical point theorem.

Keywords: Semilinear degenerate elliptic equations, critical points, two solutions, multiple solutions.

Received: 02.11.2016

Language: English


 English version:
Mathematical Notes, 2017, 101:5, 815–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024