RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 4, Pages 536–543 (Mi mzm11454)

Hadamard Decompositions of Nearly Commutative Algebras

D. N. Ivanovab

a Tver State University
b InnoCentre, Tver

Abstract: The notion of Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of the classical Hadamard matrix, which corresponds to the case of a commutative algebra. Algebras admitting Hadamard decompositions are said to be Hadamard. The paper considers the structure of Hadamard decompositions of algebras all of whose irreducible characters are of degree $1$ except one character of degree $2$. In particular, it is shown how to construct an Hadamard matrix of order $n$ by using the Hadamard decomposition of such an algebra of dimension $n$.

Keywords: orthogonal decomposition, Hadamard algebra, Hadamard matrix.

UDC: 512.55+519.1

Received: 18.10.2016

DOI: 10.4213/mzm11454


 English version:
Mathematical Notes, 2018, 103:4, 583–588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025