RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2016 Volume 100, Issue 5, Pages 724–730 (Mi mzm11473)

Papers published in the English version of the journal

Semiclassical Resonances Associated with a Periodic Orbit

H. Louatiab, M. Rouleuxb

a University of Tunis, El-Manar, Tunis, Tunisia
b University of Aix-Marseille, University of Toulon, CNRS, CPT, France

Abstract: We consider resonances for a $h$-pseudo-differential operator $H(x,hD_x;h)$ induced by a periodic orbit of hyperbolic type. We generalize the framework of Gérard and Sjöstrand, in the sense that we allow hyperbolic and elliptic eigenvalues of the Poincaré map, and look for so-called semi-excited resonances with imaginary part of magnitude $-h\log h$, or $h^\delta$, with $0<\delta<1$.

Keywords: resonance, hyperbolic orbit, Bohr–Sommerfeld rule, h-pseudo-differential operator, the Poincaré map, monodromy operator.

Received: 27.08.2016

Language: English


 English version:
Mathematical Notes, 2016, 100:5, 724–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025