RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 5, Pages 730–744 (Mi mzm11503)

This article is cited in 17 papers

Distance-Regular Shilla Graphs with $b_2=c_2$

A. A. Makhnevab, M. S. Nirovac

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Kabardino-Balkar State University, Nal'chik

Abstract: A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigenvalue $\theta_1$ equal to $a_3$. For a Shilla graph, let us put $a=a_3$ and $b=k/a$. It is proved in this paper that a Shilla graph with $b_2=c_2$ and noninteger eigenvalues has the following intersection array:
$$ \biggl\{\frac{b^2(b-1)}2\mspace{2mu}, \frac{(b-1)(b^2-b+2)}2\mspace{2mu}, \frac{b(b-1)}4\mspace{2mu};1, \frac{b(b-1)}4\mspace{2mu}, \frac{b(b-1)^2}2\biggr\}. $$
If $\Gamma$ is a $Q$-polynomial Shilla graph with $b_2=c_2$ and $b=2r$, then the graph $\Gamma$ has intersection array
$$ \{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\} $$
and, for any vertex $u$ in $\Gamma$, the subgraph $\Gamma_3(u)$ is an antipodal distance-regular graph with intersection array
$$ \{t(2r+1),(2r-1)(t+1),1;1,t+1,t(2r+1)\}. $$
The Shilla graphs with $b_2=c_2$ and $b=4$ are also classified in the paper.

Keywords: distance-regular graph, Shilla graph, graph automorphism.

UDC: 519.17

Received: 20.12.2016
Revised: 10.04.2017

DOI: 10.4213/mzm11503


 English version:
Mathematical Notes, 2018, 103:5, 780–792

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025