RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 1, Pages 25–32 (Mi mzm11602)

This article is cited in 3 papers

Asymptotics of the Codimensions $c_n$ in the Algebra $F^{(7)}$

A. V. Grishin

Moscow State Pedagogical University

Abstract: The paper studies the additive structure of the algebra $F^{(7)}$, i.e., a relatively free associative countably generated algebra with the identity $[x_1,\dots,x_7]=0$ over an infinite field of characteristic $\ne 2,3$. First, the space of proper multilinear polynomials in this algebra is investigated. As an application, estimates for the codimensions $c_n=\dim F_n^{(7)}$ are obtained, where $F_n^{(7)}$ stands for the subspace of multilinear polynomials of degree $n$ in the algebra $F^{(7)}$.

Keywords: identity of Lie nilpotency of degree $7$, proper polynomial, extended Grassmann algebra, Hall polynomial, inverse polynomial, linking relations.

UDC: 512.552.4

Received: 23.03.2017
Revised: 11.06.2017

DOI: 10.4213/mzm11602


 English version:
Mathematical Notes, 2018, 104:1, 22–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025