RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 6, Pages 884–901 (Mi mzm11608)

This article is cited in 4 papers

Axiomatization and Polynomial Solvability of Strictly Positive Fragments of Certain Modal Logics

M. V. Svyatlovskiy

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: The fragment of the language of modal logic that consists of all implications $A\to B$, where $A$ and $B$ are built from variables, the constant $\top$ (truth), and the connectives $\wedge$ and $\diamondsuit_1, \diamondsuit_2, \dots, \diamondsuit_m$. For the polymodal logic $S5_m$ (the logic of $m$ equivalence relations) and the logic $K4.3$ (the logic of irreflexive linear orders), an axiomatization of such fragments is found and their algorithmic decidability in polynomial time is proved.

Keywords: strictly positive modal logic, epistemic logic.

UDC: 510.66

Received: 28.03.2017
Revised: 05.11.2017

DOI: 10.4213/mzm11608


 English version:
Mathematical Notes, 2018, 103:6, 952–967

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024