RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 105, Issue 4, Pages 535–542 (Mi mzm11718)

Papers published in the English version of the journal

Third-Order Hankel Determinant for Transforms of the Reciprocal of Bounded Turning Functions

D. Vamshee Krishnaa, T. RamReddyb, D. Shalinic

a Department of Mathematics, GITAM University, Visakhapatnam-530 045, A. P., India
b Department of Mathematics, Kakatiya University, Warangal-506 009, T. S., India
c Department of Mathematics, Dr. B. R. Ambedkar University, Srikakulam-532 410, A. P., India

Abstract: In this paper, we make an attempt to introduce a new subclass of analytic functions. Using the Toeplitz determinants, we obtain the best possible upper bound for the third-order Hankel determinant associated with the $k^{th}$ root transform $[f(z^{k})]^{{1}/{k}}$ of the normalized analytic function $f(z)$ when it belongs to this class, defined on the open unit disc in the complex plane.

Keywords: analytic function, upper bound, reciprocal of a bounded turning function, third Hankel functional, positive real function, Toeplitz determinants.

Received: 09.06.2017
Revised: 18.10.2018

Language: English


 English version:
Mathematical Notes, 2019, 105:4, 535–542

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024