Abstract:
Let $\varphi\colon\mathbb{R}^n\times[0,\infty) \to [0,\infty)$
satisfy that $\varphi(x,\,\cdot\,)$,
for any given $x\in\mathbb{R}^n$,
is an Orlicz function and $\varphi(\,\cdot\,,t)$
is a Muckenhoupt $A_\infty$
weight
uniformly in $t\in(0,\infty)$.
The Musielak–Orlicz Hardy
space $H^\varphi(\mathbb{R}^n)$
is defined to be the space of all tempered distributions
whose grand maximal functions belong to
the Musielak–Orlicz space $L^\varphi(\mathbb{R}^n)$.
In this paper, the authors establish
the boundedness of maximal Bochner–Riesz means $T^\delta_\ast$
from $H^\varphi(\mathbb{R}^n)$
to $WL^\varphi(\mathbb{R}^n)$
or $L^\varphi(\mathbb{R}^n)$.
These results are also new even
when $\varphi(x,t):=\Phi(t)$
for all $(x,t)\in\mathbb{R}^n\times[0,\infty)$,
where $\Phi$
is an Orlicz function.