RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 6, Pages 851–856 (Mi mzm11768)

This article is cited in 3 papers

Minimal Self-Joinings of Infinite Mixing Actions of Rank 1

I. V. Klimov, V. V. Ryzhikov

Lomonosov Moscow State University

Abstract: We prove that measure-preserving actions of rank 1 of the groups $\mathbb{Z}^n$ and $\mathbb{R}^n$ on a Lebesgue space with a $\sigma$-finite measure have minimal self-joinings.

Keywords: space with a $\sigma$-finite measure, measure-preserving transformation, action of rank 1, minimal self-joining.

UDC: 517.9

Received: 09.08.2017

DOI: 10.4213/mzm11768


 English version:
Mathematical Notes, 2017, 102:6, 787–791

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024