RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2017 Volume 102, Issue 5, Pages 789–804 (Mi mzm11779)

This article is cited in 17 papers

Characterizations for the Fractional Integral Operators in Generalized Morrey Spaces on Carnot Groups

A. Eroglua, V. S. Gulievbc, J. V. Azizovbd

a Niğde Ömer Halisdemir University
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
c Ahi Evran University
d Khazar University

Abstract: In this paper, we study the boundedness of the fractional integral operator $I_{\alpha}$ on Carnot group $\mathbb{G}$ in the generalized Morrey spaces $M_{p,\varphi}(\mathbb{G})$. We shall give a characterization for the strong and weak type boundedness of $I_{\alpha}$ on the generalized Morrey spaces, respectively. As applications of the properties of the fundamental solution of sub-Laplacian $\mathcal{L}$ on $\mathbb{G}$, we prove two Sobolev–Stein embedding theorems on generalized Morrey spaces in the Carnot group setting.

Keywords: Carnot group, fractional integral operator, generalized Morrey space.

UDC: 517

Received: 11.04.2017

DOI: 10.4213/mzm11779


 English version:
Mathematical Notes, 2017, 102:5, 722–734

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024