RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 6, Pages 803–811 (Mi mzm11784)

This article is cited in 5 papers

Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics

E. A. Balovaa, K. Yu. Osipenkobc

a Moscow Aviation Institute (National Research University)
b Lomonosov Moscow State University
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow

Abstract: We consider the optimal recovery problem for the solution of the Dirichlet problem for the Laplace equation in the unit $d$-dimensional ball on a sphere of radius $\rho$ from a finite collection of inaccurately specified Fourier coefficients of the solution on a sphere of radius $r$, $0<r<\rho<1$. The methods are required to be exact on certain subspaces of spherical harmonics.

Keywords: optimal recovery, Dirichlet problem, Laplace equation, spherical harmonics.

UDC: 517.51

Received: 29.08.2017

DOI: 10.4213/mzm11784


 English version:
Mathematical Notes, 2018, 104:6, 781–788

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024