RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 5, Pages 680–692 (Mi mzm11860)

This article is cited in 2 papers

One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab, A. V. Tsvetkovaab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: We consider integrals of the form
$$ I(x,h)=\frac{1}{(2\pi h)^{k/2}}\int_{\mathbb{R}^k} f\biggl(\frac{S(x,\theta)}{h}\,,x,\theta\biggr)\,d\theta, $$
where $h$ is a small positive parameter and $S(x,\theta)$ and $f(\tau,x,\theta)$ are smooth functions of variables $\tau\in\mathbb{R}$, $x\in\mathbb{R}^n$, and $\theta\in\mathbb{R}^k$; moreover, $S(x,\theta)$ is real-valued and $f(\tau,x,\theta)$ rapidly decays as $|\tau|\to\infty$. We suggest an approach to the computation of the asymptotics of such integrals as $h\to0$ with the use of the abstract stationary phase method.

Keywords: rapidly decaying function, integral, asymptotics, abstract stationary phase method.

UDC: 517.968

Received: 13.11.2017

DOI: 10.4213/mzm11860


 English version:
Mathematical Notes, 2018, 103:5, 33–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024