RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 105, Issue 2, Pages 302–312 (Mi mzm11869)

This article is cited in 3 papers

Chebyshev Polynomials and Integer Coefficients

R. M. Trigub

Sumy State University

Abstract: Generalized Chebyshev polynomials are introduced and studied in this paper. They are applied to obtain a lower bound for the $\sup$-norm on the closed interval for nonzero polynomials with integer coefficients of arbitrary degree.

Keywords: extremal properties of polynomials, Hilbert–Fekete theorem, integer algebraic numbers, asymptotic law of the distribution of primes, Eisenstein criterion for the irreducibility of polynomials.

UDC: 517.5+511.2+512.622.63

Received: 28.11.2017
Revised: 29.05.2018

DOI: 10.4213/mzm11869


 English version:
Mathematical Notes, 2019, 105:2, 291–300

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024