RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 105, Issue 3, Pages 421–427 (Mi mzm11894)

Definability of Completely Decomposable Torsion-Free Abelian Groups by Endomorphism Semigroups and Homomorphism Groups

T. A. Pushkovaa, A. M. Sebel'dinb

a Nizhny Novgorod State University of Architecture and Civil Engineering
b Nizhny Novgorod

Abstract: Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a ${}_CE^\bullet H$-class if, for every groups $A,B\in X$, the isomorphisms $E^\bullet(A)\cong E^\bullet(B)$ and $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ imply the isomorphism $A\cong B$.
In the paper, necessary and sufficient conditions on a completely decomposable torsion-free Abelian group $C$ are described under which a given class of torsion-free Abelian groups is a ${}_CE^\bullet H$-class.

Keywords: completely decomposable Abelian group, homomorphism group, endomorphism semigroup, definability of Abelian groups.

UDC: 512.541

Received: 15.12.2017
Revised: 19.03.2018

DOI: 10.4213/mzm11894


 English version:
Mathematical Notes, 2019, 105:3, 398–403

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024