RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 105, Issue 2, Pages 179–186 (Mi mzm11940)

This article is cited in 7 papers

On the Hurwitz Zeta Functions with Algebraic Irrational Parameter

A. Balčiūnas, A. Dubickas, A. Laurinčikas

Institute of Mathematics, Vilnius University

Abstract: It is well known that the Hurwitz zeta function $\zeta(s,\alpha)$ with rational or transcendental parameter $\alpha$ is universal in the sense of Voronin, i.e., a wide class of analytic functions can be approximated by the shifts $\zeta(s+i\tau,\alpha)$, $\tau\in \mathbb R$. The case of algebraic irrational $\alpha$ is still an open problem. It is proved that there exists a nonempty closed set of analytic functions that can be approximated by shifts $\zeta(s+i\tau,\alpha)$ with algebraic irrational $\alpha$.

Keywords: algebraic irrational number, Hurwitz zeta function, limit theorem, universality.

UDC: 517

PACS: УДК511

Received: 24.01.2018
Revised: 19.09.2018

DOI: 10.4213/mzm11940


 English version:
Mathematical Notes, 2019, 105:2, 173–179

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024