RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 103, Issue 3, Pages 483–489 (Mi mzm12028)

This article is cited in 7 papers

Papers published in the English version of the journal

A Note on Campanato Spaces and Their Applications

D. H. Wang, J. Zhou, Z. H. Teng

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Republic of China

Abstract: In this paper, we obtain a version of the John–Nirenberg inequality suitable for Campanato spaces $\mathcal{C}_{p,\beta}$ with $0<p<1$ and show that the spaces $\mathcal{C}_{p,\beta}$ are independent of the scale $p\in (0,\infty)$ in sense of norm when $0<\beta<1$. As an application, we characterize these spaces by the boundedness of the commutators $[b,B_{\alpha}]_{j}$ $(j=1,2)$ generated by bilinear fractional integral operators $B_{\alpha}$ and the symbol $b$ acting from $L^{p_{1}}\times L^{p_{2}}$ to $L^{q}$ for $p_{1},p_{2}\in(1,\infty), q\in (0,\infty)$ and $1/q=1/p_{1}+1/p_{2}-(\alpha+ \beta)/n$.

Keywords: bilinear fractional integral operator, Campanato spaces, characterization, commutators, John–Nirenberg inequality.

Received: 10.05.2017
Revised: 08.08.2017

Language: English


 English version:
Mathematical Notes, 2018, 103:3, 483–489

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024