RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 2, Pages 198–211 (Mi mzm12051)

This article is cited in 5 papers

On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$

S. B. Vakarchuk

Alfred Nobel University Dnepropetrovsk

Abstract: For the classes of functions
$$ W^r(\omega_{\mathcal{M}},\Phi):=\{f \in L^r_2(\mathbb{R}): \omega_{\mathcal{M}}(f^{(r)},t) \le \Phi(t) \ \forall\,t \in (0,\infty)\}, $$
where $\Phi$ is a majorant and $r \in \mathbb{Z}_{+}$, lower and upper bounds for the Bernstein, Kolmogorov, and linear mean $\nu$-widths in the space $L_2(\mathbb{R})$ are obtained. A condition on the majorant $\Phi$ under which the exact values of these widths can be calculated is indicated. Several examples illustrating the results are given.

Keywords: mean dimension, mean $\nu$-width, majorant, entire function of exponential type, generalized modulus of continuity.

UDC: 517.5

Received: 22.04.2018
Revised: 09.09.2018

DOI: 10.4213/mzm12051


 English version:
Mathematical Notes, 2019, 106:2, 191–202

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025