RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2020 Volume 107, Issue 1, Pages 59–73 (Mi mzm12053)

This article is cited in 1 paper

On a Multilinear Functional Equation

A. A. Illarionovab

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
b Pacific National University, Khabarovsk

Abstract: The following functional equation is solved:
$$ f(x_1+z)\dotsb f(x_2+z)f(x_1+\dotsb+x_{s-1}-z) =\phi_1(x)\psi_1(z)+\dotsb+\phi_m(x)\psi_m(z), $$
where $x=(x_1,\dots,x_{s-1})$, for the unknowns $f,\psi_j\colon\mathbb C\to\mathbb C$ and $\phi_j\colon\mathbb C^{s-1}\to\mathbb C$ for $s\ge 3$ and $m\le 4s-5$.

Keywords: functional equation, theta function, Weierstrass sigma function, elliptic function, addition theorems, multilinear functional-differential operators.

UDC: 517.968+517.583

Received: 24.04.2018
Revised: 05.09.2018

DOI: 10.4213/mzm12053


 English version:
Mathematical Notes, 2020, 107:1, 80–92

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025