RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 105, Issue 4, Pages 545–552 (Mi mzm12069)

This article is cited in 7 papers

A Sobolev Orthogonal System of Functions Generated by a Walsh System

M. G. Magomed-Kasumovab

a Vladikavkaz Scientific Centre of the Russian Academy of Sciences
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala

Abstract: Properties of functions from the Sobolev orthogonal system $\mathfrak W_r$ generated by the Walsh system are studied. In particular, recurrence relations for functions from $\mathfrak W_1$ are obtained. The uniform convergence of Fourier series in the system $\mathfrak W_r$ to functions $f$ from the Sobolev spaces $W^r_{L^p}$, $p\ge 1$, $r=1,2,\dots$ is proved.

Keywords: Sobolev orthogonality, Walsh system, uniform convergence, recurrence relation.

UDC: 517.521

Received: 23.05.2018
Revised: 10.07.2018

DOI: 10.4213/mzm12069


 English version:
Mathematical Notes, 2019, 105:4, 543–549

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024