RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 3, Pages 387–394 (Mi mzm12099)

This article is cited in 2 papers

Systems of Representatives

K. D. Kovalenkoa, A. M. Raigorodskiibcde

a National Research University "Higher School of Economics", Moscow
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Adyghe State University, Maikop
d Lomonosov Moscow State University
e Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude

Abstract: Lower and upper bounds are obtained for the size $\zeta(n,r,s,k)$ of a minimum system of common representatives for a system of families of $k$-element sets. By $\zeta(n,r,s,k)$ we mean the maximum (over all systems $\Sigma=\{M_1,\dots,M_r\}$ of sets $M_i$ consisting of at least $s$ subsets of $\{1,\dots,n\}$ of cardinality not exceeding $k$) of the minimum size of a system of common representatives of $\Sigma$. The obtained results generalize previous estimates of $\zeta(n,r,s,1)$.

Keywords: systems of common representatives, minimum systems of common representatives.

UDC: 517

Received: 28.06.2018
Revised: 27.12.2018

DOI: 10.4213/mzm12099


 English version:
Mathematical Notes, 2019, 106:3, 372–377

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025