This article is cited in
1 paper
Some Problems Related to Completely Monotone Positive Definite Functions
V. P. Zastavnyi Donetsk National University
Abstract:
This paper deals with several problems related to functions of the class
${\mathcal{CM}}$ of completely monotone functions and functions of the class
$\Phi(E)$ of positive definite functions on a real linear space
$E$. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function
$x^{-\mu}(x^2+1)^{-\nu}$. Theorem 2 states that if
$f\in C^{\infty}{(0,+\infty)}$ and
$\delta\in{\mathbb{R}}$, then
$$ f(x)-a^\delta f(a x)\in {\mathcal{CM}}\qquad \text{for all}\quad a>1 $$
if and only if
$-\delta f(x)-xf'(x)\in \mathcal{CM}$. A similar result for functions in
$\Phi(E)$ is obtained in Theorem 9: if
$\varepsilon\in{\mathbb{R}}$ and a function
$h\colon [0,+\infty)\to\mathbb{R}$ is continuous on
$[0,+\infty)$ and differentiable on the interval
$(0,+\infty)$ and satisfies the condition
$xh'(x)\to 0$ as
${x\to+0}$, then
$$ h(\rho(u))-a^{-\varepsilon}h(a\rho(u))\in\Phi(E)\qquad \text{for all}\quad a>1 $$
if and only if
$ \psi_{\varepsilon}(\rho(u))\in\Phi(E), $ where
$\psi_{\varepsilon}(x):=\varepsilon h(x)- xh'(x)$ for
$x>0$ and
$\psi_{\varepsilon}(0):=\varepsilon h(0)$. Here
$\rho$ is a nonnegative homogeneous function on
$E$ and
$\rho(u)\not\equiv 0$. It is proved (Example 6) that:
- $e^{-\alpha\|u\|}(1-\beta\|u\|)\in\Phi(\mathbb{R}^m)$ if and only if $-\alpha\le\beta\le\alpha/m$;
- $e^{-\alpha\|u\|^2}(1-\beta\|u\|^2)\in\Phi({\mathbb{R}}^m)$ if and only if $0\le\beta\le2\alpha/m$.
Here
$\|u\|$ is the Euclidean norm on
$\mathbb{R}^m$. Theorem 11 deals with the case of radial positive definite functions
$h_{\mu,\nu}$.
Keywords:
completely monotone functions, positive definite functions, Hausdorff–Bernstein–Widder theorem, Fourier transform, Bochner–Khinchine theorem.
UDC:
517.5+
519.213 Received: 10.07.2018
DOI:
10.4213/mzm12130