RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2019 Volume 106, Issue 2, Pages 222–240 (Mi mzm12130)

This article is cited in 1 paper

Some Problems Related to Completely Monotone Positive Definite Functions

V. P. Zastavnyi

Donetsk National University

Abstract: This paper deals with several problems related to functions of the class ${\mathcal{CM}}$ of completely monotone functions and functions of the class $\Phi(E)$ of positive definite functions on a real linear space $E$. Theorem 1 verifies some conjectures of Moak related to the complete monotonicity of the function $x^{-\mu}(x^2+1)^{-\nu}$. Theorem 2 states that if $f\in C^{\infty}{(0,+\infty)}$ and $\delta\in{\mathbb{R}}$, then
$$ f(x)-a^\delta f(a x)\in {\mathcal{CM}}\qquad \text{for all}\quad a>1 $$
if and only if $-\delta f(x)-xf'(x)\in \mathcal{CM}$. A similar result for functions in $\Phi(E)$ is obtained in Theorem 9: if $\varepsilon\in{\mathbb{R}}$ and a function $h\colon [0,+\infty)\to\mathbb{R}$ is continuous on $[0,+\infty)$ and differentiable on the interval $(0,+\infty)$ and satisfies the condition $xh'(x)\to 0$ as ${x\to+0}$, then
$$ h(\rho(u))-a^{-\varepsilon}h(a\rho(u))\in\Phi(E)\qquad \text{for all}\quad a>1 $$
if and only if $ \psi_{\varepsilon}(\rho(u))\in\Phi(E), $ where $\psi_{\varepsilon}(x):=\varepsilon h(x)- xh'(x)$ for $x>0$ and $\psi_{\varepsilon}(0):=\varepsilon h(0)$. Here $\rho$ is a nonnegative homogeneous function on $E$ and $\rho(u)\not\equiv 0$. It is proved (Example 6) that: Here $\|u\|$ is the Euclidean norm on $\mathbb{R}^m$. Theorem 11 deals with the case of radial positive definite functions $h_{\mu,\nu}$.

Keywords: completely monotone functions, positive definite functions, Hausdorff–Bernstein–Widder theorem, Fourier transform, Bochner–Khinchine theorem.

UDC: 517.5+519.213

Received: 10.07.2018

DOI: 10.4213/mzm12130


 English version:
Mathematical Notes, 2019, 106:2, 212–228

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024