RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2018 Volume 104, Issue 2, Pages 231–242 (Mi mzm12138)

This article is cited in 16 papers

On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients

N. N. Konechnajaa, K. A. Mirzoevb, A. A. Shkalikovb

a Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk
b Lomonosov Moscow State University

Abstract: Asymptotic formulas as $x\to \infty$ are obtained for a fundamental system of solutions to equations of the form
\begin{equation*} l(y): = (-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y, \qquad x\in [1,\infty), \end{equation*}
where $p$ is a locally integrable function representable as
$$ p(x) = (1+r(x))^{-1},\qquad r\in L^1(1,\infty), $$
and $q$ is a distribution such that $q= \sigma^{(k)}$ for a fixed integer $k$, $0\leqslant k\leqslant n$, and a function $\sigma$ satisfying the conditions
$$ \begin{aligned} \sigma &\in L^1(1,\infty), \qquad \text{if}\quad k <n, \\ |\sigma|(1+|r|) (1+ |\sigma|) &\in L^1(1,\infty), \qquad \text{if}\quad k = n. \end{aligned} $$
Similar results are obtained for functions representable as
$$ p(x) = x^{2n+\nu}(1+ r(x))^{-1},\qquad q= \sigma^{(k)},\qquad \sigma(x)=x^{k+\nu} (\beta +s(x)), $$
for fixed $k$, $0\leqslant k\leqslant n$, where the functions $r$ and $s$ satisfy certain integral decay conditions. Theorems on the deficiency index of the minimal symmetric operator generated by the differential expression $l(y)$ (for real functions $p$ and $q$) and theorems on the spectra of the corresponding self-adjoint extensions are also obtained. Complete proofs are given only for the case $n=1$.

Keywords: differential operators with distribution coefficients, quasi-derivatives, asymptotics of solutions of differential equations, deficiency index of a differential operator.

UDC: 517.928

Received: 04.04.2018

DOI: 10.4213/mzm12138


 English version:
Mathematical Notes, 2018, 104:2, 244–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024